Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Front Artif Intell ; 5: 912022, 2022.
Article in English | MEDLINE | ID: covidwho-2242372

ABSTRACT

Graphical-design-based symptomatic techniques in pandemics perform a quintessential purpose in screening hit causes that comparatively render better outcomes amongst the principal radioscopy mechanisms in recognizing and diagnosing COVID-19 cases. The deep learning paradigm has been applied vastly to investigate radiographic images such as Chest X-Rays (CXR) and CT scan images. These radiographic images are rich in information such as patterns and clusters like structures, which are evident in conformance and detection of COVID-19 like pandemics. This paper aims to comprehensively study and analyze detection methodology based on Deep learning techniques for COVID-19 diagnosis. Deep learning technology is a good, practical, and affordable modality that can be deemed a reliable technique for adequately diagnosing the COVID-19 virus. Furthermore, the research determines the potential to enhance image character through artificial intelligence and distinguishes the most inexpensive and most trustworthy imaging method to anticipate dreadful viruses. This paper further discusses the cost-effectiveness of the surveyed methods for detecting COVID-19, in contrast with the other methods. Several finance-related aspects of COVID-19 detection effectiveness of different methods used for COVID-19 detection have been discussed. Overall, this study presents an overview of COVID-19 detection using deep learning methods and their cost-effectiveness and financial implications from the perspective of insurance claim settlement.

2.
Front Artif Intell ; 5: 909101, 2022.
Article in English | MEDLINE | ID: covidwho-2224962

ABSTRACT

This concept paper addresses specific challenges identified in the UN 2030 Agenda Sustainable Development Goals (SDG) as well as the National Health Policy of India (NHP-India) and the Ministry of Health Policy of UAE (MHP-UAE). This policy calls for a digital health technology ecosystem. SDG Goal 1 and its related objectives are conceptualized which serves as the foundation for Virtual Consultations, Tele-pharmacy, Virtual Storage, and Virtual Community (VCom). SDG Goals 2 and 3 are conceptualized as Data Management & Analytical (DMA) Architecture. Individual researchers and health care professionals in India and the UAE can use DMA to uncover and harness PHC and POC data into practical insights. In addition, the DMA would provide a set of core tools for cross-network initiatives, allowing researchers and other users to compare their data with DMA data. In rural, urban, and remote populations of the UAE and India, the concept augments the PHC system with ICT-based interventions. The ICT-based interventions may improve patient health outcomes. The open and flexible design allows users to access various digital materials. Extendable data/metadata format, scalable architecture for petabyte-scale federated discovery. The modular DMA is designed using existing technology and resources. Public health functions include population health assessment, policy development, and monitoring policy implementation. PHC and POC periodically conduct syndromic surveillance to identify population risk patterns. In addition, the PHC and POC deploy medical and non-medical preventive measures to prevent disease outbreaks. To assess the impact of social and economic factors on health, epidemiologists must first understand diseases. Improved health due to compliance with holistic disease treatment plans and access to scientific health information.

3.
Frontiers in artificial intelligence ; 5, 2022.
Article in English | EuropePMC | ID: covidwho-1887984

ABSTRACT

Graphical-design-based symptomatic techniques in pandemics perform a quintessential purpose in screening hit causes that comparatively render better outcomes amongst the principal radioscopy mechanisms in recognizing and diagnosing COVID-19 cases. The deep learning paradigm has been applied vastly to investigate radiographic images such as Chest X-Rays (CXR) and CT scan images. These radiographic images are rich in information such as patterns and clusters like structures, which are evident in conformance and detection of COVID-19 like pandemics. This paper aims to comprehensively study and analyze detection methodology based on Deep learning techniques for COVID-19 diagnosis. Deep learning technology is a good, practical, and affordable modality that can be deemed a reliable technique for adequately diagnosing the COVID-19 virus. Furthermore, the research determines the potential to enhance image character through artificial intelligence and distinguishes the most inexpensive and most trustworthy imaging method to anticipate dreadful viruses. This paper further discusses the cost-effectiveness of the surveyed methods for detecting COVID-19, in contrast with the other methods. Several finance-related aspects of COVID-19 detection effectiveness of different methods used for COVID-19 detection have been discussed. Overall, this study presents an overview of COVID-19 detection using deep learning methods and their cost-effectiveness and financial implications from the perspective of insurance claim settlement.

SELECTION OF CITATIONS
SEARCH DETAIL